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NEW CONCEPT S IN NOHI LNEAR INFIN IT — H ORI ZO N STOCHAE L’IC ESTIMATION AND CONTROL:
TH~ FIN ITE ELEN~NT CASE

Loren K. Platzean

Department of Industrial and
Operati ons Engineerin g

8.11 Telephone Laboratories Th. University of Michigan
Napervill., IL 60540 Ann Arbor , MI 48109

Abs tract zon stochastic control. Any “dual contro l” prob—
1cm can be slightly modified so that the conditions

A finite probabilistic system (FPS) is a described above are satisfied . On the other hand ,
discr.t.—tim. controlled stochastic process hay— some unmodified “dual control” problems are mean-
ing finite input, output, and (internal) state ingleas unless a finite horizon or discount rate
sets. (A partially—observ ed Markov decision pro— is specified .
cess is an example of an FPS). It may be viewed
as the simplest formulation of a nonlinear esti— Consider , for example , a fair coin that is
mation and contro l problem, tossed at times k—O ,l The outcome of toss

k is denoted s(k)—H or T. Immediately after toss
Under conditions similar to observability k>O . an experimenter observes y(k) where

and controllability in linear systems, the prob—
1cm of selecting inputs , on the basis of past 0 , if s(k—l)—~(k)inputs and outputs (with perfect recall), so as y(k) — (
to maximize a ti me—averaged expected reward , is 1, if s(k—1)~&~(k)shown to be meaningful a. the horizon increases
without hound or as a discount approaches unity:
an optimal strategy exists; it may be realized Th. experimenter then selects an input from the
by a (strategy—independent) state estimator along set (H ,T.L. The object is to maximize the limit—
with a stationary policy on th. stat, estimate; ing frequency of correct guesses u(k) s(k). State
and its perfor mance does not depend on the iiti information is gained by selecting u(k)8, which
tial stat, of information, causes a biaeed coin (e.g. Pr(s(k+1) is H}’..6) to

be used in toss k+l.
Dual control aspects  of the problem , and

potenti..i extention of the results to more general If the horizon is finite or a discount 3 is
svsct’ss are briefly discussed, used , then the problem is well—posed ; the biased

coin is used during a finite interval , and the
most likely state is selected thereafter. As the

I. INTRODUCTION horizon grows without bound or 8~ 1, the limiting
strategy becomes : u(k)—B , indefinitely. Since
there will be no guesses , and hence no correct

Th. deceptive simplicity of the linear—quadra — guesses , this is the worst possible strategy.
ti c—Gauas~an problem formulation and solution has
been articulate d by Wit senhausen (181. among oth— An optimal strategy is:
era . This pape r describes recent work (much of
which Wa . originally reported in the author ’s doc-
toral ~tss .rtaeion (111) aimed at understanding ~B, if k is a power of 2
the relationsh ip between estima tion and control in u(k) —
a more general setting. Specificall y, i t  exam ines the most likely state , otherwise
a class of discrete—time undiscounied infinite—
horizon stochas tic control problems in which the
input , output , sod sta re se ts are all finite. Con— The limiting proportion of correct guesses is now
ditloni stisilar to controilabjlit’j and observabil— 1. This strategy suffers the aesthetic drawback
ity are introduced and shown to imply well-posed— of being nonstationary . And it  clearly is not
ness of th. problem in the following sen s e : The approached as the horizon grows without bound or
optimal performance converge. to that of a eta - the discount approaches unity. For these reasons ,
tionary policy on the sufficient statistic , as the the problem is considered to be ill—posed in the
horizon grows without bound or the discount ap— conventional undiacounted infinite horizon fornu—
proac hes unity. lation.

This  approach c lar i f ies  the conce pt of “dual The problem becomes more tractible if we add
control ” (7 . 3 , 171 iib undiscounted inftnit .—hori— to the plant model a mechanism whereby observe—

Approved for ‘public rolen~ ’:
Pas.arch supported by AFOSR grant 77”328]. di~trtbut iofl UliliU~it~ d.
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tion dynamics fail (in a specifica lly described is a stochastic matrix, VutU.
manner, e.g. equally likely observation of 0 or 1)
with probability t, with 0 < c << 1. This ver— The dynamic evolution of an FPS is described
sion of the problem has a solution that agrees in the following terminology :
with LQG—induced intuition. The optimal strategy
is stationary, and alternates between measurement 1. When a decision—maker specifies input u(k),
and guessing with an avecage period that grows that input is said to be accented by the Fl’S.
without bound as cO. Becaus. the system is fal— Output y(k+l) is subsequently emitted by the FPS.
lible , the mathematics of optimization will not
reach into the arbitrarily distant past for in— 2. Given that an FPS in state s(k)i accepts in-
formation that in practice would surely have be— put u(k)—u, it will undergo a transition to state
come noise-corrupted. s( k+l)—j and emit output y(k+l)..y, with (condi-

tional) probability Pjj(yl u). (conditionally) in—
This paper will describe conditions that dependently of the “past” {e(k’) , u(k ’) ,

imply desirable structural irop.rtie. of the type
discussed above . Results are stated without
proof ; for details , see (11,12,13). Our presen— 3. The Mar%rov decision process (MDI’) consisting
tation follows a standard plan: of the internal state and input processes of an

FPS is called the underlying process (of that FPS).
‘Problem Formulation: Give the plant It is described by the stochastic matrices (P(u) :

model and performance criterion . u€U}.

‘State Estimation: Derive a recursive 4. The time set is (0, ..., K). The terminal time
form for the sufficient statistic K ia called the horizon.
and specify a condition for sta-
bi lity of the state estimation Remark. This notation is due to Paz (10).
process.

b) The probability ~~~~~‘Dynamic Proprama.tng Formulation: D.—
fine an operator whose fixed An FPS is studied in conjunction with an flIt—
point is the solution to the tial state probability (ISP) and a control s~~ —
infinite horizon problem. !ZL (CS).

FIxs4 Point Theorem: Prove that the The ISP, denoted by it , is a stochastic N—vec—
dynamic prograaming operator tor having the interpretation iTj  Pr{s(O)i}.
ha. a unique fixed point. The set of ISP’s (i.e. the set of horizontal sto-

chastic N—vectors) is denoted by TI.
Co~~ucatjonal Considerations: Show 

*how an c—optimal solution can The CS, denoted by y, is a mapping ‘I’: z -
~ U,

be obtained on a digital computer. where Z~ represents the free monoid generated by
IJxY , i.e. the set of finite strings of I/O pairs .
A decision—maker acting according to Y selects

II. PROBLEM FORMULATION inputs

a) the~~lant model (2.3) u(k) — y ( z ( k ) )

(2.1) Definition. A finite probabilistic (dyna-
mical) gy~tem (FPS) is a 4—tup le (U , T, S, where z(k) is the information vector
{P(y u) : ycT , u U}) where:

(1.) U is a finite noneapty set of (2.4) z(k) (u (O),y(1)) (u(1),y(2))

~~~~~ values (or decisions); (u(k—l),y(k)).
(L i) T is a finite nonempry set of

o u t  valu es (or observations); 
The set of CS ’s (i.e. the set of mappings from Z~

(iii) S — (1, ..., NI is a finite to U) ii denoted by r.

stat: valuas 
(internal) w, may view {.(k),u (k),y(k)} as random var-

iables on a probability space P (7r,y) — (0 . F,
(iv) Each P(y lu ) is an NxN substochastic Pr~ ,~ ) s,here : 12 is the infinite product set of

mat rix of stat, transition ~~~~~~~~ SxUxY ; P is the a— algebr a generated by the finite

abilit i ~ 
cylinders; and ~~~~ is determined in a straight—e forward manner from the transition probabilities
described above .

(2. .
~) p(u) • ~~~ P(ylu) 

E~~,y will denote the expectation opera tor
associated with

~~~- ~~~~~~-
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c) Th. performance indices (3.3) Define T(’T,z) — irP(z) / 7IP(z)v,
when 1rP(z) ~ ~~,

Consider a bounded real—valued function A on
SxUxYxS, and define (3.4) Define random variable , on

n
lT (k) — ‘I (ii, z(k) )

(2.5) r(k) — A(s(k),’u(k) , y(k+l) , s(k+1))

—l K—i Now rlt(k) is the vector of conditional state
(2.6) g(K) — K 

~~~~~~ 
r(k) probabilities at time It, given inputs and outputs

that have evolved up to that time. It may be com—
—l It ‘ puted by the (strategy—independent) recursive

(2.7) g(~) — (1—8) Zk_0 B r(k) 8<1 formula

We call r(k) an incremental reward ; g(K) 1. the (3,5) flhl(~) —
time—averaged reward , and ~(B) is the discount—averaged reward. Each is a random variable on it, if k—O
P (1T ,y J .

( T(fl hl(k~l),  (u(k—l) ,y (k ) ) ) ,  otherwise
d) Statement of the problem

b) A metric on TI
The problem is to demonstrate the existence

of strategies that “opt imize” the infinite—horizon (3.6) Definition (Bayes ’ operator). For itch ,
pe rformance indices limg~.~ g(K) and limBfl ~(B). weLd, with wj~,O V ieS and rw>O , let lt.wSpecifically, we determine conditions that assure denote the vector in TI having entries
the existence of an optimal performance g, and a
family (yit) of optimal CS’. such that, for all (it.w) — it w /itw.
ISP ’ s l T and all CS’s y ,  I i i

(3.7) Definition. For it ,iT ’cfl , define

(2.8) li K..CDE (g(K) } 
~~~~~~~~~~~~~~~~~~~~~~~~~ B (a) 

~~ — — —

(2.9) lim suPg.,,,E~~~
(g(K)} C g (b) 6(it,w ’] — zics~

asOri — 0)

(2.10) h a  sup8+1E~~1
(j(B)} < g. (c) A[it,1T ’) sup(6(ir.w, ir’.v):

weAN , u~>O Vies , ww>O, it’w>O}.
a) Bibliographic notes

Standard references on the role of MDP’s in (3.8) 
~~~~ ‘ — ‘

~~~
, 5 and A are metrics on

stochast ic control theory are Bertseka. (4) and TI, and
Kushner (9). The Partially Observed MDP was in-
dependently conceived by Drake (6) and Astrom
[1,2). Computational algorithms that solve fi— 0 C 

~ 
— it ’I — 5 (1T ,ir ’J  ~~. Af i t ,r’ )  C 1.

nite—horizon and discounted POMDP’s have been
given by Saallwood and Sondik (151 and Sondik (16).
A more extensive bibliography may be found in (11, (3.9) Theorem (evaluation of Es). For
12,131. ir,ir ’cTI , define :

III. TN! STAT! ESTIMATOR FOR FPS’. c1 — min{it~/ir~ :

c2 — mIn{w~/n :
a) The recursive formula

Let us introduce some terminology : Then

(3.1) For z (u~,y 1 ) (u 2,y2) ~~~~~~~~~~~~~~ 
define 

A it 

1 —

the matrix product P(z).P(y 1 1u 1) ‘ 
~~ 

i +
P(y 2 f u 2 ) ...‘ P(ykIuk).

(3.2) Define the vertical N—vector The metric 5 , also known as the Majnal mea—
v • (1, ... , l)~ . sure, has many applications in the theory of

er godic Markov chains (81. Informa lly, 3(it , ’)

_ _ _ _ _ _ _ _ _ _ _ _ _
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ii the (minimal) “quantity of probability” that (3.15) Corollary.
would have to be “reassigned” in order to trans-
form probability distribution r into probability ~z(P) sup {A[T(n ,P), T(ri’,P)]
distribution it ’. Similarly, .~ (ir ,it ’ )  is the least

nP#0, r~’P#O}.upper bound on the quan tity of conditional prob-
ability by which ~t and n’ might differ if they
were conditioned on ’identical observation..

(3.16) Corollary. z(PQ) ~. cz[ P) n ( Qj .
The distinction between 6 and 3 is also ilit~—

minated by an examination of the top ologies they d) Another metric on ITinduce on TI: the topology induced by 6 is con-
nected , but 3 causes TI to be sep~rated into 2N_1

With c~ ,c2 as in (3.9), define“faces”.

c)~ The contraction 2roperty of T (3.17) D[n,it’) — 1 — min(c
~
,c
~
j.

It is well known that if P is a stochastic
matrix and

Now D is a metric on TI and (114) D[it ,~T ’)  <
< D (~T ,~I ’1 < 1. It has the following re—

(3.10) ~(P1 max 5(~ ip ‘~~1 < markable property (required in Theorem (5,2)): If
i,jeS v is a convex function on IT and vi —

(vOT)—v(it ’)} then v (it)—vOT ’)I < lv i ‘ D(it ,~t ).
then , for any it ,it ’cII , This occur , because the discontinuitiea’ of 3 (dl.—

cussed in section 3b) coincide with the potential
dis co nt inu it ies of a convex function on IT.

(3.11) ~S[~rP , n ’P ) &LPI 6N.n’),
e) The condition on observation dynamics

i.e. , the trans for mation f [ IT J — ii? is a concrac— As in (3.12) define

~~~~ in TI. One consequence of this property of P
is that [r(P)’~} approaches a uniqu. limit as zr’~ .

(3.18) a ( PJ  — max~D(T(e
1,P), T(e~ ,P ) J :The rate of covergence a(P) is called the eyg~4ic

coefficient of th. stochastic matrix P. etP#0, e~P#O}

(3.12) DefinitIon: If P i. . nonzero substo—
chascic matrix, then define Now consider the following condition

— max{AtT (et ,P), T(.~ ,P)1 : (3.19) Condition (detectability). There is an

•
ip~Io ,i~,~I0} a<1 and an integer C such that, for every

ISP it and every CS y:

Remark: The evaluation of otPJ by (3.9) requires
N3 operations. This is comparable to E~~1 (e[P(z(C))1} ~ 

a.
the effort expended when multiplying two
Nxtl matrices.

Assuming (3.19) holds, there exists an ‘u a

The generalized ergodic coe fficient a(P) ha. such that
the following properties :

(3.13) Lemea. (a) 0 < n(P) < 1 for all substo— (3.20 k (cztP(z(C))j} c :5.

chi’atic a~trices P~O.

(b) n(Pj < 1 ~—‘ P La subrec— Using the recursion (3.5) and the contraction
tangular*. (3.14) , we obtain

(c) n(Pj • 0 c—~ rank(Pl — I. (3.21) 1im. ,Ei t ,~ 
t lfl~(k)— n” (k)l) — 0

(3.14) Theorem . (Contraction Property of T) v ~~~~~~~~~~~~ ~ r.
3LT(n,P), I(~

’,P)I < n(P) Es(r~,n ’I,
This i. analogous to convergence of the condition-
al stat. distribution (and not simply the con—
ditional mean) to an initial—value—independent

(n a subrecta ngular matrix , P~f’O and P~~~O *imply 
~tn~

0 and Pj.~0. with respect to conventional metrics ‘n

_ _  A14
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trajectory in the Kalman rilte r . Following Astrom (1966) ,

An FPS may be triviall y ~odifted so that Con-
dition (3.19) 1. satisfied. For 0 ‘ c “ 1 , mul— (4.10) G~(it) — max C., (g(K)} — 1(1 tf Ke) (it) .
ttplv each P(y u) by 1-~. and then add c/(*S’#Y) to Y
each entrY of each ?(y u). This quantity may be

~nterpreted as the preb.bility of model failure , Similarly, using th~ contraction property ofas discussed in Section 1. discounted dyna mic prog rameing operators , we see
that f~ has a unique fixed point ~ , satisfying

IV. DYNM4LC PROGR.AJQUNG FOR2IUI.ãTION
(4.1 1) v~ — 1is.~,,_, (f8)

Kv V v £ v

Define:
and

(* .1) e t is the “unit vector” in IT whose i—tb
entry equals unity. 

-
(4.12) Cs(lt ) — max E,, {g(B) } — (1—B) v~(~’).

~.. . 2) V is the vector space of real—valued ~
bounded continuous functions on IT . —
— This last equation is justifi .d as outlined in
V - ~vs.V : v(e )—0~ sZ V. Chapter 6 of (41.

(...) ~CV is the “zero function ’ e (it)—o, Both C and are known to be convex and
Vitch. continuous ~n IT,

~..5) q(u) is the expected incremental reward
vector, a vertical N—vector with entries V. TN! FIXED POINT ~I{EORE11

q1 (u) — 
~~~~~ 

~~~ P
1~~( v :u )  R(i,u.y,j). We now require a second condition :

(5.1) Condition (reachability) . There is a
t . .6) f~ : V • V is the discount~4 4vn~~ic

prog~aaming operator 
and an integer ~. such that , for every ‘tIT,
jeS, a sequence of inputs u1, ..., u,
exist ., satisfying

(f 3v ( (it) — sax 
~ 

{itq(u) +

~(\~‘~P (Y U V) v(T(it,(u,y)))}. — E
~~s lT

i
(P (u j) ... . P(u~))~1 I

~. .7)  f : V - V is the undiscounted dynapic Also define

programeing o perator, given~~y f —

-..8) f : V V is the normalized (undiscoug~ted) ~max — aax
~(S

max CU q1(u) umax 
— 

~,nin
dynamic prottamaing oper!~~~ given by

r

(lv ) (it) • ( f v )  (it) — (fv) (eN). 
gain — sinj~5

min
~~~ 

q1(u) C — 
(1—ø)(1—a)

The following theorem is the main result of this
Remsrk : This operator corre.ponds to a value- research .

iteration algorithm of D. J. White (19).

— — — (5.2) Theorem. Assume Conditions (3.19) and
~..9) f’~ : V • V is the damoed normaliged (~~~~

— jS.1). Now, for any 0<1(1, the sequence
discount.d) dynamic programsing ope rator f 1k9, k.’l. , . . .  , converges uniformly to
given by a function y A in V having the following

properties :

— ~ j ~ + (1—1 ) V (i) Iv — V
5

(t’) (equivalent to (i)) There is a
R.mark: This operator corresponds to a value— constant g, called the 

~~~~ 
or

it erat io n algorithm of P . 3. Schw eitzer ~‘p timIl perfonnan~e, such that( 14 1. )iv *~v*)(1T) — g, V it 1

(ii) V is convex

-~~ - -



( i i i )  v~~ C C VII. CONCLUSIONS
* *(iv) v (it) + K g — max . TI {v (it ’ ) t  <

K * A finite—element plant model has been con—
(f e)0) I v (it) + K 

~ 
— sidered and controllability/observability—like

conditions have been shown to imply well-posedness
(it’)) of the problem in the infinite—horizon case. A

key concept in obtaining these results was a me—

* tric with respect to which the state estimator is
(v) v*OT) + g/(l—B) — msx.,,~ TI (V (it’)} I a contraction . The author is currently interested

* * in generalizing this metric to distributions on
C v (it) + g/(l—9) — infinite state sets such as Euclidean space or the

* 
unit sphere. In the case of a Kalman filter , the

min.,,~~ {v (it’)). contraction, in order to be analogous with what
is presented here, must account not only for con-
vergence of the conditional mean, but for conver—

Now (2.8), (2.9). (2.10) are imeediat. consequences gence of the entire distribution to a normal dis—
of (4.10), (4.12), and (5.2). tribution with appropriate covariance as well.

VI. COMPUTATION OF AN c-OPTIMAL CONTROLLER VIII. ACKNOWLEDG~ iENT
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v(ks’l—M(k)) (u(k—l). y(k))J is a sufficient Processes with Incomplete State Information ,”
statistic *. Then the problem can be expressed as 3. Math. Anal. Appl. 10, 1965.
an ‘~ P having state process z(k); this is a simple
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